- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gessner, Spencer (3)
-
Ariniello, Robert (2)
-
Holtzapple, Robert (2)
-
Lee, Valentina (2)
-
Litos, Michael (2)
-
Cary, John (1)
-
Doss, Christopher (1)
-
Fujii, Hiroki (1)
-
Hansel, Claire (1)
-
Nichols, Travis (1)
-
Stoltz, Peter (1)
-
Varverakis, Max (1)
-
Wolfinger, Kathryn (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
Andrian, Ivan (1)
-
Anisimov, Petr (1)
-
Fischer, Wolfram (1)
-
Pilat, Fulvia (1)
-
Saethre, Robert (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pilat, Fulvia; Fischer, Wolfram; Saethre, Robert; Anisimov, Petr; Andrian, Ivan (Ed.)A large challenge with Plasma Wakefield Acceleration lies in creating a plasma with a profile and length that properly match the electron beam. Using a laser-ionized plasma source provides control in creating an appropriate plasma density ramp. Additionally, using a laser-ionized plasma allows for an accelerator to run at a higher repetition rate. At the Facility for Advanced Accelerator Experimental Tests, at SLAC National Accelerator Laboratory, we ionize hydrogen gas with a 225 mJ, 50 fs, 800 nm laser pulse that passes through an axicon lens, imparting a conical phase on the pulse that produces a focal spot with an intensity distribution described radially by a Bessel function. This paper overviews the diagnostic tests used to characterize and optimize the focal spot along the meter-long focus. In particular, we observe how wavefront aberrations in the laser pulse impact the peak intensity of the focal spot. Furthermore, we discuss the impact of nonlinear effects caused by a 6 mm, CaF2 vacuum window in the laser beam line.more » « less
-
Varverakis, Max; Holtzapple, Robert; Fujii, Hiroki; Gessner, Spencer (, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment)
-
Lee, Valentina; Ariniello, Robert; Doss, Christopher; Wolfinger, Kathryn; Stoltz, Peter; Hansel, Claire; Gessner, Spencer; Cary, John; Litos, Michael (, Physics of Plasmas)We present an experimental and simulation-based investigation of the temporal evolution of light emission from a thin, laser-ionized helium plasma source. We demonstrate an analytic model to calculate the approximate scaling of the time-integrated, on-axis light emission with the initial plasma density and temperature, supported by the experiment, which enhances the understanding of plasma light measurement for plasma wakefield accelerator (PWFA) plasma sources. Our model simulates the plasma density and temperature using a split-step Fourier code and a particle-in-cell code. A fluid simulation is then used to model the plasma and neutral density, and the electron temperature as a function of time and position. We then show the numerical results of the space-and-time-resolved light emission and that collisional excitation is the dominant source of light emission. We validate our model by measuring the light emitted by a laser-ionized plasma using a novel statistical method capable of resolving the nanosecond-scale temporal dynamics of the plasma light using a cost-effective camera with microsecond-scale timing jitter. This method is ideal for deployment in the high radiation environment of a particle accelerator that precludes the use of expensive nanosecond-gated cameras. Our results show that our models can effectively simulate the dynamics of a thin, laser-ionized plasma source. In addition, this work provides a detailed understanding of the plasma light measurement, which is one of the few diagnostic signals available for the direct measurement of PWFA plasma sources.more » « less
An official website of the United States government
